skip to main content


Search for: All records

Creators/Authors contains: "Nakhleh, Luay"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Cancers develop and progress as mutations accumulate, and with the advent of single-cell DNA and RNA sequencing, researchers can observe these mutations and their transcriptomic effects and predict proteomic changes with remarkable temporal and spatial precision. However, to connect genomic mutations with their transcriptomic and proteomic consequences, cells with either only DNA data or only RNA data must be mapped to a common domain. For this purpose, we present MaCroDNA, a method that uses maximum weighted bipartite matching of per-gene read counts from single-cell DNA and RNA-seq data. Using ground truth information from colorectal cancer data, we demonstrate the advantage of MaCroDNA over existing methods in accuracy and speed. Exemplifying the utility of single-cell data integration in cancer research, we suggest, based on results derived using MaCroDNA, that genomic mutations of large effect size increasingly contribute to differential expression between cells as Barrett’s esophagus progresses to esophageal cancer, reaffirming the findings of the previous studies.

     
    more » « less
  2. Holland, Barbara (Ed.)
    Abstract The evolutionary histories of individual loci in a genome can be estimated independently, but this approach is error-prone due to the limited amount of sequence data available for each gene, which has led to the development of a diverse array of gene tree error correction methods which reduce the distance to the species tree. We investigate the performance of two representatives of these methods: TRACTION and TreeFix. We found that gene tree error correction frequently increases the level of error in gene tree topologies by “correcting” them to be closer to the species tree, even when the true gene and species trees are discordant. We confirm that full Bayesian inference of the gene trees under the multispecies coalescent model is more accurate than independent inference. Future gene tree correction approaches and methods should incorporate an adequately realistic model of evolution instead of relying on oversimplified heuristics. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. Kolodny, Rachel (Ed.)
    Phylogenomic studies of prokaryotic taxa often assume conserved marker genes are homologous across their length. However, processes such as horizontal gene transfer or gene duplication and loss may disrupt this homology by recombining only parts of genes, causing gene fission or fusion. We show using simulation that it is necessary to delineate homology groups in a set of bacterial genomes without relying on gene annotations to define the boundaries of homologous regions. To solve this problem, we have developed a graph-based algorithm to partition a set of bacterial genomes into Maximal Homologous Groups of sequences ( MHGs ) where each MHG is a maximal set of maximum-length sequences which are homologous across the entire sequence alignment. We applied our algorithm to a dataset of 19 Enterobacteriaceae species and found that MHGs cover much greater proportions of genomes than markers and, relatedly, are less biased in terms of the functions of the genes they cover. We zoomed in on the correlation between each individual marker and their overlapping MHGs, and show that few phylogenetic splits supported by the markers are supported by the MHGs while many marker-supported splits are contradicted by the MHGs. A comparison of the species tree inferred from marker genes with the species tree inferred from MHGs suggests that the increased bias and lack of genome coverage by markers causes incorrect inferences as to the overall relationship between bacterial taxa. 
    more » « less
  4. Abstract Summary

    We report on a new single-cell DNA sequence simulator, SimSCSnTree, which generates an evolutionary tree of cells and evolves single nucleotide variants (SNVs) and copy number aberrations (CNAs) along its branches. Data generated by the simulator can be used to benchmark tools for single-cell genomic analyses, particularly in cancer where SNVs and CNAs are ubiquitous.

    Availability and implementation

    SimSCSnTree is now on BioConda and also is freely available for download at https://github.com/compbiofan/SimSCSnTree.git with detailed documentation.

     
    more » « less
  5. Abstract Motivation

    Single-nucleotide variants (SNVs) are the most common variations in the human genome. Recently developed methods for SNV detection from single-cell DNA sequencing data, such as SCIΦ and scVILP, leverage the evolutionary history of the cells to overcome the technical errors associated with single-cell sequencing protocols. Despite being accurate, these methods are not scalable to the extensive genomic breadth of single-cell whole-genome (scWGS) and whole-exome sequencing (scWES) data.

    Results

    Here, we report on a new scalable method, Phylovar, which extends the phylogeny-guided variant calling approach to sequencing datasets containing millions of loci. Through benchmarking on simulated datasets under different settings, we show that, Phylovar outperforms SCIΦ in terms of running time while being more accurate than Monovar (which is not phylogeny-aware) in terms of SNV detection. Furthermore, we applied Phylovar to two real biological datasets: an scWES triple-negative breast cancer data consisting of 32 cells and 3375 loci as well as an scWGS data of neuron cells from a normal human brain containing 16 cells and approximately 2.5 million loci. For the cancer data, Phylovar detected somatic SNVs with high or moderate functional impact that were also supported by bulk sequencing dataset and for the neuron dataset, Phylovar identified 5745 SNVs with non-synonymous effects some of which were associated with neurodegenerative diseases.

    Availability and implementation

    Phylovar is implemented in Python and is publicly available at https://github.com/NakhlehLab/Phylovar.

     
    more » « less
  6. Species tree estimation is a basic part of many biological research projects, ranging from answering basic evolutionary questions (e.g., how did a group of species adapt to their environments?) to addressing questions in functional biology. Yet, species tree estimation is very challenging, due to processes such as incomplete lineage sorting, gene duplication and loss, horizontal gene transfer, and hybridization, which can make gene trees differ from each other and from the overall evolutionary history of the species. Over the last 10–20 years, there has been tremendous growth in methods and mathematical theory for estimating species trees and phylogenetic networks, and some of these methods are now in wide use. In this survey, we provide an overview of the current state of the art, identify the limitations of existing methods and theory, and propose additional research problems and directions. 
    more » « less
  7. Coalescent methods are proven and powerful tools for population genetics, phylogenetics, epidemiology, and other fields. A promising avenue for the analysis of large genomic alignments, which are increasingly common, is coalescent hidden Markov model (coalHMM) methods, but these methods have lacked general usability and flexibility. We introduce a novel method for automatically learning a coalHMM and inferring the posterior distributions of evolutionary parameters using black-box variational inference, with the transition rates between local genealogies derived empirically by simulation. This derivation enables our method to work directly with three or four taxa and through a divide-and-conquer approach with more taxa. Using a simulated data set resembling a human–chimp–gorilla scenario, we show that our method has comparable or better accuracy to previous coalHMM methods. Both species divergence times and population sizes were accurately inferred. The method also infers local genealogies, and we report on their accuracy. Furthermore, we discuss a potential direction for scaling the method to larger data sets through a divide-and-conquer approach. This accuracy means our method is useful now, and by deriving transition rates by simulation, it is flexible enough to enable future implementations of various population models. 
    more » « less
  8. Kubatko, Laura (Ed.)
    Abstract Many recent phylogenetic methods have focused on accurately inferring species trees when there is gene tree discordance due to incomplete lineage sorting (ILS). For almost all of these methods, and for phylogenetic methods in general, the data for each locus are assumed to consist of orthologous, single-copy sequences. Loci that are present in more than a single copy in any of the studied genomes are excluded from the data. These steps greatly reduce the number of loci available for analysis. The question we seek to answer in this study is: what happens if one runs such species tree inference methods on data where paralogy is present, in addition to or without ILS being present? Through simulation studies and analyses of two large biological data sets, we show that running such methods on data with paralogs can still provide accurate results. We use multiple different methods, some of which are based directly on the multispecies coalescent model, and some of which have been proven to be statistically consistent under it. We also treat the paralogous loci in multiple ways: from explicitly denoting them as paralogs, to randomly selecting one copy per species. In all cases, the inferred species trees are as accurate as equivalent analyses using single-copy orthologs. Our results have significant implications for the use of ILS-aware phylogenomic analyses, demonstrating that they do not have to be restricted to single-copy loci. This will greatly increase the amount of data that can be used for phylogenetic inference.[Gene duplication and loss; incomplete lineage sorting; multispecies coalescent; orthology; paralogy.] 
    more » « less
  9. null (Ed.)